Modulation of force during locomotion: differential action of crustacean cardioactive peptide on power-stroke and return- stroke motor neurons.
نویسندگان
چکیده
Crustacean cardioactive peptide (CCAP) elicited expression of the motor pattern that drives coordinated swimmeret beating in crayfish and modulated this pattern in a dose-dependent manner. In each ganglion that innervates swimmerets, neurons with CCAP-like immunoreactivity sent processes to the lateral neuropils, which contain branches of swimmeret motor neurons and the local pattern-generating circuits. CCAP affected each of the four functional groups of motor neurons, power-stroke excitors (PSE), return-stroke excitors (RSE), power-stroke inhibitors (PSI), and return-stroke inhibitors (RSI), that innervate each swimmeret. When CCAP was superfused, the membrane potentials of these neurons began to oscillate periodically about their mean potentials. The mean potentials of PSE and RSI neurons depolarized, and some of these neurons began to fire during each depolarization. Both intensity and durations of PSE bursts increased significantly. The mean potentials of RSE and PSI neurons hyperpolarized, and these neurons were less likely to fire during each depolarization. When CCAP was superfused in a low Ca2+ saline that blocked chemical transmission, these changes in mean potential persisted, but the periodic oscillations disappeared. These results are evidence that CCAP acts at two levels: activation of local premotor circuits and direct modulation of swimmeret motor neurons. The action on motor neurons is differential; PSEs and RSIs are excited, but RSEs and PSIs are inhibited. The consequences of this selectivity are to increase intensity of bursts of impulses that excite power-stroke muscles.
منابع مشابه
Modulation of oscillator interactions in the crab stomatogastric ganglion by crustacean cardioactive peptide.
The modulation of the pyloric rhythm of the stomatogastric ganglion of the crab, Cancer borealis, by crustacean cardioactive peptide (CCAP) is described. CCAP activated pyloric rhythms in most silent preparations, and altered the phase relationships of pyloric motor neuron firing in all preparations. In CCAP, the pyloric rhythms were characterized by long lateral pyloric (LP) neuron bursts of a...
متن کاملPeptide hormone modulation of a neuronally modulated motor circuit.
Rhythmically active motor circuits are influenced by neuronally released and circulating hormone modulators, but there are few systems in which the influence of a peptide hormone modulator on a neuronally modulated motor circuit has been determined. We performed such an analysis in the isolated crab stomatogastric nervous system by assessing the influence of the hormone crustacean cardioactive ...
متن کاملEclosion hormone provides a link between ecdysis-triggering hormone and crustacean cardioactive peptide in the neuroendocrine cascade that controls ecdysis behavior.
Three insect peptide hormones, eclosion hormone (EH), ecdysis-triggering hormone (ETH) and crustacean cardioactive peptide (CCAP), have been implicated in controlling ecdysis behavior in insects. This study examines the interactions between these three peptides in the regulation of the ecdysis sequence. Using intracellular recordings, we found that ETH is a potent activator of the EH neurons, c...
متن کاملCrustacean cardioexcitatory peptides may inhibit the heart in vivo.
Peptide neurohormones exist as functionally similar analogues in a wide variety of invertebrate and vertebrate phyla, and many have been implicated as cardiovascular regulators. In decapod crustaceans, these include the pentapeptide proctolin, crustacean cardioactive peptide (CCAP) and the FMRF amide-related peptides F1 and F2, all of which are found in the pericardial organs located immediatel...
متن کاملBursts of information: coordinating interneurons encode multiple parameters of a periodic motor pattern.
The limbs on different segments of the crayfish abdomen that drive forward swimming are directly controlled by modular pattern-generating circuits. These circuits are linked together by axons of identified coordinating interneurons. We described the distributions of these neurons in each abdominal ganglion and monitored their firing during expression of the swimming motor pattern. We analyzed t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 18 شماره
صفحات -
تاریخ انتشار 1997